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ABSTRACT

A mathematical model is presented for the three-dimensional non-linear static and frequency domain dynamic
analysis of non-rotationally uniform single leg multitube compliant risers with torsion in the presence of

~ unidirectional monochromatic surface gravity waves traveling at an arbitrary angle,
~ arbitrary monochromatic motions and rotations of the upper and lower ends, of the same frequency as

the waves, and

~ arbitrary currents.

IIie effects of riser-ocean bottom interaction, present in some catenary configurations, and of non-linear

hydrodynamic drag are taken into account, using an equivalent harmonic linearization technique. We governing
non-linear ordinary differential equations are subsequently solved using an adaptive non-uniform grid finite
difference method, an embedding technique and Newton's iteration. Good initial approximations of the solution are
also provided allowing fast convergence of the iterative scheme.

We proposed riser analysis methodology is compared with a cable dynamic analysis and two time domain finite

element analyses of compliant risers. Three riser configurations are used for these comparisons; a riser configuration
ideal ized as a cable. a catenary riser configuration and a steep wave riser configuration.

Additional numerical examples are also presented to examine the effects of various excitation conditions on the

performance of different types of risers. The riser configurations examined, include a shaHow water buoyant riser, a
shallow water catenary riser under the presence of two-dimensional and three-dimensional excitation and a deep
~ater catenary riser experiencing riseracean bottom interac tion.
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l. INTRODUCTION AND OUTLINE

Compliant risers arc assemblages of pipes with very small overall bending rigidity used to convey ail fram the

acean floo or a subsurface buoy to a surface platform. A compliant riser is permitted to acquire large static

deformatians because of its small bending rigidity and readjusts its configuration in response to large slow motions

of thc supporting platforms, to which it is rigidly connected, without excessive stressing. Compliant risers have

been used successfully in protected watcr3 in buoy loading stations for tankers. Extensions of shallow water

concepts have been recently proposed as alternatives to conventional production risers, because they simplify the

over@9 production system.

%bc purpose of this work is to:

+Present a mathematical model for thc three~cnsional non-linear static and hequency domain
dynamic analysis af non-rotationally uniform compliant risers with torsion in the presence of
unidiirectional monochromatic waves travelling at an arbitrary angle, arbitrary monochromatic motions
and rotations of the upper and lower ends of the riser, of the same frequency as the waves, and arbitrary
cuNcnts.

~ Study thc effects of riser-ocean bottom interaction, present in some catenary configurations, and thc
effects of non-linear drag due to separation and wake formation, using a harmonic equivalent
linearizatian technique

epresent a solution technique to solve the general thrcc-dimensional nan-linear static and dynamic
compliant riser problem in thc presetice of the above mentioned excitatians.

~ Picnic& comparisons of thc proposed methodology. with other related cable or riser dynamic analyses

~ Present some examples f'mm the static and dynimic analysis of buoyant and catenary risers in a
tn~mensianal or thrce~cnsional configuration possibly under ihc prcscnce of riser~ bauom
mtcractlon.

This work is organized as follows:

+ Chapter 2 provides a complete farmulation of the threc4imcnsionaJ static and dynamic riser problem.
This Chapter provides thc governing equations and baundary conditions for the problem. ln addition ii
prcscnts in detail the equivalent lincarization techniques employed io approximate ihc nan-linear drag
farces due to separation and wake formation and the forces due to riser-ocean bonoiii interaction,

~ Chapter 3 provides the numerical solution algorithm for ihc solution of the stauc and dynamic riser
problem using an embedding technique.

~ Chapter 4 provides comparisans of the proposed methodology with a cable dynamic analysis
methodology and two finite element methodologies for the analysis of compliant risers, using a riser
configuration idealized as a cable, a catenary riser and a steep wave riser configuration.

~ Chapter S provides some additianal numerical results for a shallow water bUoyant riser, a shallow water
catenary riser and a deep water catenary riser experiencing riser-ocean bottom intcra:tian.

~ Chapter 6 presents brief conclusions from the present work and recommendations for additional
research in this area





2. PROBLEM FORMULATION

Z.l INTRODUCTION

A mathematical model for the non-linear global static and dynamic behavior of an assemblage of tubes modelled

as a non-rotationally uniform slender ehstic rod with space varying torque can be found in [l] and [2]. Efficient

numerical solutions of the non-linear three-dimensional static problem of a compliant riser in the presence of a

steady current can be found in [2] and [3]. The numerical solutian scheme employs a novel embedding technique

which starts by using twa-dimensional solutions as initial approximations. Numerical techniques ta determine thc

two-dimensional solutions using embedding can be found in [3] to [5]. References [3] and [4] provide such

techniques for buoyam risers in a current while reference [5] provides a technique for catenary risers without ocean

bottom interaction. The initial approximatians of the solution of the corresponding two-dimensional static problems

are analytical and are derived using asymptotic techniques. These analytical solutions correctly account for aII

major external and res oring forces for each case and, therefore, provide excellent initial approximatians of the

solutian of the non-linear static problem. For this reason, fast convergence of the embedding sequence and the

associated Newton-Raphson iterations employed in the numerical solution of the non-linear problem is observed in

[2] to [5] as opposed ta the more usual incremental loading method

Efficient solutions of the linear unforced and undamped dynam ic problem of a compliant riser around a nan-linear

static conliguration to determine natural modes and frequencies using a combination af embedding and asymptotic

techniques can be found in [6] and [7]. Thc asymptotic solutions of the linear eigcnproblcm for compliant risers are

based on [8].

In this work we extend the theory developed in �] to �] to aUow three&mcnsional non-linear static and dynamic

analysis of non-rotationally uniform compliant risers with torsion in the presence of
~ unidirectional monochromatic surface gravity waves traveling at an arbitrary angle,

+ arbitrary monochromatic motions and rotations of the upper and lower ends, of thc same frequency as
the waves, and

~ arbiuary currents.

In this work, the effects of riser-ocean bottom interaction, present in some catenary configurations, and of non-linear

Mg primarily due to separation and wake formation are taken into account.

Our solution approach is iterative and involves the following steps:
1. Solutian of the non-linear static problem in the presence of mean forces and moments duc to the

currents and waves [possibly involving static riseracean bottom interaction!.

2. Lincarization of the structural part of the non-linear dynamic equations around the static configuration
for small dynarruc motions and angles.



3. Equivalent linearization of the non-linear riser-ocean bouom inter3ction forces.
4. Equivalent linearization of the non-linear diag force and moment assuming monochromatic three-

dimensional excitation and response.

5. Solution of the resulting non-linear boundary value problem modeling compliant riser dynamics,
possibly involving riser-ocean bottom inter+:tion, in the frequency domain.

6. Determination of mean forces and moments due to cunents, waves and riser motion.

Once these mean forces and moments are obtained, we iterate starting from step l until we reach a convergent
solution.

This process provides

~ The static configuration and the associated static tension and bending moments.
~ The dynamic motion amplitude and phase and the associated dynamic tension and bending moments for
a general three-dimensional monochromatic excitation and response,

~ The total static and dynamic tension and bending moments.
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Usingg = Oand�!, wealso have

lo = I.s>nG,o,cos9 ] U = [O,sing,cosy ] U0 ' P ' 0' 0 0

as can be also seen in Figure 2-2, where the assumption Q = 0 is made.

Y

Figure 2.2: Euler Angles at the Riser-Ocean Bottom Interface

FoHowing [10], the following assumptions for the static interaction force F>, and moment M~ per unit length are

made, valid for y, c 0, i.e. when the riser penetrates the soil

F~ = -k y j

H~ = -k

where ky and k+ are the vertical and rocking spring constants per unit length of the soil. If y > 0, we have

FB = Mtt = 0. In our static analysis. we neglect interaction force per unit length components along Q and I

because no reliable model is available to account for these components for large riser displacements away from a



previous static equilibrium position. In addition, we neglect static interaction moments per unit length about g, and

1 because of the strip theory approximation followed in this work.

If the riser tube is assumed rigid, the spring coefficients kr and k+ depend on the geometric  orm of the contact

area and on the soil shear modulus G and Poisson's ratio va, see [10]. For contact areas which are rectanguhr of

width 2d and length 2c, the above coefficients are given by

k 8
B

B c

B~ 4d
B

1-v

where P>' and P' are functions of d/c. For d/c <  I, which is the usual case, P 2.2 and P' 0.37, If we assume

that the contact geometry is rectangular, we may choose

 j = D /2

c = 1b/2 �. 8;2!
where t is the riser length on the bottom, Equation �.8,1! is, af course, very approximate, particularly if A = Dn,

but is used here for order of magnitude estimates. Reference [10] provides a discussion of how ta obtain Neasonable

estimates of G and v . Typically the values of v vary between 0.25 and 0.45, while the values of G~ show a

much larger variation between 30 MPa to 350 MPa or even higher. For example, using v ~ 0.45, Gu = 350MPa,

D<=0.31m, I>- � 200m, we find that k>=55MPa and k+=23MPa. If the effective weight of the riser is
W, = 250N/m, the resulting penetration is of the order of 5x10 m, i.e. negligible, The above analysis indicates that

by assuming a perfectly rigid ocean bottom, no significant errors in the vertical static position of the riser will result,

However, due to equation �.5!, no siinilar statement can be made about the horizontal position of the riser on the

ocean floor for three-dimensional configurations. It is expected that this horizontal positian greatly depends on the

method of deployment of riser for catenary and lazy $ configurations. If the method af deployment leads to a nearly

straight static configuration on the ocean floor, equation �.5! indicates that the riser position will continue to be

nearly straight, as the overall riser configuration becomes genuinely three-dimensional, except near the lower

support point due io the effect of a clamped rod boundary condition. If a reasonable method of deployment for

catenary and lazy S configurations is followed, it is expected that due to its high flexibility no significant static

bending stresses will result in the portion of the riser on the acean floor. This, of course, assumes that the ocean

floor is practically flat or that existing proirusions do not significantly impede motions of the riser.
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the riser pcnetrates the soil

k y + cygjg-Ik 11 ]t 1 �.9!

HB = -tk~g+ c~~i ]q
t o �.10!

where k>, k' and kx' are vertical, horizontal and rocking spring constants per unit unit length; c>', c' and c< are thc
corresponding damping coefficients; lt � � sing q+ cosy r is a small dynamic displacernent along 1 and subscript t
denotespartiaidcrivative withrespect to time. If y= y,+ yt 2 0,we have Fttt = M» =0.

If the tube is assumed rigid, the above spring coefficients depend on the geometric form of the contact area, the

soil shear modulus G, Poisson's ratio v, while the damping coefficients also depend upon density pa and to a
lesser extent upon the frequency of excitation �01. If the assumptions made in equations �.7! and �.8! are also
followed here, then

k1 = 2 lie !G 8 Vc81 fd
�.11!

where P is a function of d/c. For d/c « I. which is the usual case, P' l.l. Using results for circular footings and
the procedure suggested in [10j, an order of magnitude estimate of c>' and c for rectangular contact areas of width
2d can bc obtained from:

�.12!~= 6.8 � �d
8

1-u

1-v BGB8
c = 36.8�

1 d
7f

�.13!

Using a similar process for c'r appears to be even more approximate due to the different geometries involved but

may be used for rough estimates:

c = 1.6�
d �.14!

where

2.2 2 DYNAMIC RISER-OCEAN BOTTOM INTERACTION

In this section we provide a mathematical model for the riser-ocean bottom interaction forces and moments for

small dynamic motions and angles around a static configuration. Following f10], the following assumptions are

made for the total static and dynamic force and moment per unit length on the riser, valid for y=y,+y t < 0, i.e. when



3 l v !~ J
S4

d

�.IS!

where J<< is the mass moment of inertia per unit length around the tangential axis to the centerline. !t. should also be
su essed again that the above expressions are all very approximate if D~ = D't,

If the tube is not assumed rigid, then thc above expressions should also involve stiffness and damping
contributions due to lateral shell deformations of thc tubes primarily due to the vertical component of the interaction

force. If the spring coefl icient kT of thc tube in this shell deformation mode is comparable or much smaller than k>
of equation �.7!, then ky in equation �.9! should be replaced by

e T yk +k
�.16!

which effectively reduces the spring interaction force. The damping coefficients should also be replaced by new

effective damping coefficients which also take into account energy losses in the riser due to the above mode of
deformation.

223 FINAL EXPRESSIONS FOR RISER-OCEAN BOTTOM INTERACTION FORCES AND
MOMENTS

Based on the above discussion and because, of the very approximate way in which the results of [10] for

rectangular or cucular foundauon footings need to be extrapolated to provide estimates of the interaction forces and

moments for risers on the ocean lloor, our expressions for the interaction loads were simplified to only capture the

major relevant effects. For practicaUy flat bottoms, for which horizontal motions of a riser are essentiaHy
untundered, thc major effects of this interaction are expected to be adequately modelled by only taking into account

vertical interaction forces and neglecting rocking moments altogether  M = 0!. Therefore, using �.9! we obtain

ke~ . ce~tQ y  0

�.I7!

y>Q

For reasons of generahty. we will assume now that the ocean floor is at y = ha as in Figure 2-3 in which case

equation �,17! needs to be rewriucn as

for the overaH static and dynamic interaction force, where k,> and c,y are effecuve spring and damping constants
obtained as discussed in previous sections. Equation �.17! is similar to the equation used in [8] for mooring line
time simulations.
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y-hB�

F B

y-hB>Q

Figure 2-3: Axis System

The riser~eau bottom interaction modelled using �.18! is a non-linear mechanism which can be properly
studied using a time domain approach, Due to the very high stiffness of the soil implied in �.18!, significant impact
phenomena may exist, in particular if very large riser velocities close ro the touch down point are present [l1]. If,
however, the top end excitation has decayed significantly and the velocity of the touch down point is sinaH, the
interaction can be considered smooth aud quasi-static fl I j. Reference  l l j also provides an estimate of when

impact phenomena are expected for the case of a two-dimensional taut cable on a perfectly rigid ocean floor. Such

impact phenomena are possible when the speed of the touch down point is larger than the phase velocity, cr, of an
equivalent taut string, cr =  TJM!'+, where T is the local effective tension and M the mass plus added mass of the

cable in the normal direction. An estimate of the expected velocity of the touch down point can be made by

multiplying the frequency of excitation times its quasi-static motion determined by imposing the dynamic motion of

the top end as a quasi-static offset on rop of a particular static offset. The adequacy of such procedures needs to be
verified using a time domain solution.



l3

If no significant impact phenomena are expected, equivalent linearization is, however, expected to be adequate.
This is the approach implemented in this work,
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2.3 NON-LINEAR HYDRODYNAMIC LOADS

The prediction of the external loads FH and MH is, perhaps, one of the mare important factors in a successful
analysis of the static and dynamic behavior of compliant risers. Until rational methods allow the prediction of these
loads in separated flows, approximate estimates based on strip theory and experimental two-dimensional flow

models may be used for design purposes, see [12] to [14], At local amplitudes of oscillation large compared to the
diameter in the presence or absence of current, the drag component of the hydrodynamic force dissipates energy
given to the system from external excitation, such as the oscillation of the support points of the riser [12]. When the
local amplitude of oscillation in the presence of a current is less than about one diameter, the drag component of the
force may actually provide energy to the system for certain ranges of the reduced velocity, see [12] to [14]. This
situation is likely to occur in many compliant riser applicauons involving an external current or large slow drill
ascillations of the supporung platforms  effectively acting as currents for most of the cycle!, However, as the results

af [12] and [13J indicate, the limiung amplitude, at least for constant currems, of the mode excited, is only slightly
above one diameter, which unless the mode excited is sufficientl high, is not expected to be a driving factor.
However, vortex induced lift response leads to an increase of the mean drag caefflicient parallel to the current  or
slow large amplitude oscillation! which may in turn have a significant effect on the response parallel to the curlnt.

In this work, we will concentrate on the dissipative effects of quadratic diag either in the presence or absence of
current. Quadratic drag acts differently than linear drag in that it reduces large amplitudes faster and allows smaller

amplitudes to persist for larger distances from the excitation point.. Linear drag would, of course, induce a uniform
exponential decay of the amplitude away from the excitation poinL

In this work, we adopt the 1'allowing procedure based on [15] to estimate the external hydrodynamic force and
moment per urut length on the riser. A similar procedure was used in [2] to [5] to estimate the external static force
and moment due to a current.

We assume first that the external current velocity is a given function of y and of the foflowing form:

V  y! = [V"  y! .0, 4  y'! !. U

Next we assume the presence of monochromatic travelling surface gravity waves of the form

n = A expt-ik  xcos9 +zsine !+i<tj
W W W

where A, k, tir, 8 are the wave amplitude, wave number, circular frequency and angle of the direction of

propagation with respect ro the +x axis and i the imaginary unit. The real part needs to be taken in �.20! and the
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where

~ m,< and m,~ are added masses per unit length in the7and rl directions,
~ q, r are small dynamic displacements dong Q andPl, and

2 rl /P
 z.3v!

louie fluid acceleration and relative velocity terms needed in equations �.29!, �.35! and �,36! are defined by
7 7

�.38!

T

 z.39!
For the reasons mentioned earlier, all fluid velocities and accelerations are evaluated at the static position  x,y gJ
of the riser.

In our estimates of the hydrodynamic forces, equations �.29!, �.35! and �.36!, lift forces orthogonal to Q and
VV are neglected in accordance with the arguments concerning the maximum vortex induced lift response made at
the beginning of this section. However, the magnitude of C> may significantly increase if such lift motion exists,
see [13] and [14]. In this work, constant values of CD along the length are used for simplicity. Pmcedures to obtain
estimates of CD and of the added mass coefficients used to determine sectional added mass for circular cylinders and

a number of idealized excitation conditions in terms of the flow and response parameters using rigid cylinder
experiments can be found in [12] to [14].

Finally, we need to provide estimates for the external hydrodynamic moment MH. Due to the strip theory
approximation used in this work, the only component which is considered non-zero is the moment around the

tangent to the centerline [16]. Within ideal flow theory, the presence of MHQ can be exphined because the
cross-section is not, in general, symmetrical about an axis orthogonal to V~'4't on the Q, Tl plane [16]. Due to

lack of data far real flow conditions, we estimate the external torque per unit length using potential theory and
adding a quadratic fricuonal component:







8, s!= W,L /~I,' s!

g~ s! = W L /EI  s!
e a e

B< s! = WaL /EI<"  s!

y s! = W L/EA s!

�.55.I!

�.55.2!

�.55.3!

�.55.4!

�.55.5!tj s,y ! = W s,y !/W

The above governing equations �.42! to �.54! are non.dimensional. Forces are non-dimensionalized by W,L,

where W, is the average effective weight per unit length of the riser in water. and lengths by L, the unstretched riser

length. In addition, the e1ements c, of the static transformation matrix C~ can be expressed in terms of the static

Euler angles, see [3].

Thirteen boundary conditions are, in addition, required to complete the statement of the static problem. In this

work, single leg multitube riser conffgurations with a fixed and clamped lower end and prescribed static offsets and

angles at the upper end are studied. The corresponding boundary conditions are

xp o! =yp�! =z,�! sp�! p �.56!

e  o! = e �! = 0, y  o! = e>

p  ! T' Yp�! YT', zp�!=zT

�!=y; 6  l!=6T; QG  !=IT

Equations �.42! to �.54! and �.56! to �.59! are of the following symbolic form

�.57!

�.58!

�.59!

w = f  s,w ! 9 w �!,w �!!=0

~ T
.x z;sw =[T .0 ~Q ~~l ~~l ~~I' '4 .8 .0 'xp.yp> p> p!

P O' P 0 0 0 0 P P G
�.6]!

where w  s! is the solution vector and f is a non-linear function of s and w,. For the general three-dimensional

stauc problem we choose
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2.4.2 EQUIVALENT LINEARIZATION OF NON-LINEAR LOADS FOR MONOCHROMATIC
RESPONSE

For overdarnped systems, as a compliant riser operating at large amplitudes in comparison to its diameter, and in
the absence af significant impact phenomena, it is well known that the equivalent linearization of the non-linear

external loads aIIows us to replicate the results of time domain codes with accuracy usually sufficient for

preliminary design, see [I I], [17] and [18]. This occurs because higher frequency components introduced by the
external load non-linearities are filtered out. In this work equivalent linearization of the non-linear external loads is

performed assuming monochromatic excitation and response of given circular frequency M. Our equivalent
linearization procedure is based on [I7] and minimizes the mean square error over a period of oscillation between
each non-linear component of the load and its monochromatic approximation.

As stated above, the dynamic solutions studied in this work are of the form

]  ~! = Re[ 1  ! P  t!j

where wi s,t! is the solution vector, wt s! is a complex function of the arc length, subscript I denotes dynamic
quantities, tii is the given circular frequency of oscillation and t is the tiine. As in reference [6], we find it
convenient to choose

and we will express the governing dynamic equations in terms of these unknowns, separated into real and imaginary

W] �! � W]R S! + I vt] [ S! �.64!

where i is the imaginary unit.

with N, = 13 unknown scalar variables. The first twelve variables are coupled in the governing equations while s
can be determined from �.54! once the computation of To is completed.

The mean external loads F>, FH and MH required in the solution of �.57! will be determined for the general
case in Section 2,4.2. For the iniuai solution of the static problem the hydrodynamic loads are computed by
assuming zero dynamic motion, i.e. only taking into account the effects of effective weight, cuJrent, surface waves,

ocean-bottom interaction and boundary conditions. For subsequent iterations, they are computed without making
this assumption, i,e. by also including the effect of dynamic motion.
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Equivalent linearization of �.18! is performed by assuming that

y s,t! = yo sj + y1 s,t! �. 65!

where

~ yp s! is the static deflection

~ yl s,t! is a small dynamic deflection in the vertical direction around the static conligwation. given by

�.e6!y1 s,t! = Re[Y! s!exp i t + la s!!]

where yt s! Z 9 is the dynamic motion amplitude in the j direction and a s! is a corresponding phase, rehted to p,
q and r by

T
0 0 0y1exp ta! = L»,t 2>.c32][p,q.r 3 �.e7!

which is due to �.1!

Equation �. 18! can be separated into a static component

 y h8! y < hB

�.6B!
y ~hB

and a linearized dynamic component of the form

B1 = ~"e y1'~e y1t~ �.69!

where k,r and c,> can be found from the following equations

CASE 1 yo 5 htt and yo+ yt 5 hit

-.4.2.I EQUIVALENT LINEA RIZATION OF RISFR.OCEAN BOTTOM INTERACTION FORCES

The approach taken in this work, as explained above, is to use an equivalent linearization of the distributed

interaction force �.18! in the soludon of the dynamic problem assuming monochromatic excitation and response.

An alternative approach, used in mooring dynamics [8], which replaces the part of the cable on the ocean floor with

boundary conditions at the touchdown point, although attractive in two-dimensional configurations, does not extend

easily to three-dimensional configurauons present in compliant risers where the part of the riser on the ocean floor is

not rectilinear and where bending and torsion effects are also present.
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e e' e e �.7O!

CASE 2: 0 + ly~-h>l < yt

y -h y-h 2 y-hky = ky[l , p B 1-  o B! 1 , -1  o B!]
e e 2 7T

y1
�.71!

1 . -1 yo B
- � sin   !]

y -hB
c

2
y1

y � hB y yl

e
�.72!

CASE 3

y=a
e e �.73!

which are, of course, also consistent with our intuition concerning �.18!.

Finally, F> and FB t need to be expressed in the U " system. Using �.1! and C = C T, we obtain

"B'['12'22'32 '"py p 0 0

Bo �.74!

y > h

To simplify calculations let

�.76!k' = k x cose + z sine !
o w o

cosh[k y -hB!]
w �.77!

sinh[k y -hB!]
b' =A �.78!

These allow us to write �.23! to �.25! and �,26! to �,28! as

yx a'case�
14>t

eyy =  cosk'-isink'! ib' �.79!
Vz a ' sine�

7= -Re  k +i c p p 11Bl e ~ e [c12,c22,c32] [ ,q,r] exp igt!} [c ,c c ] U �.75!
12' 22' 32 p

2.42.2 EQUIVALENT LINEARIZATION OF EXTERNAL HYDRODYNAMIC LOADS
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UX
t a Cose�

YY= >{sink' t icosk'! �.80!ib'

yZ
t a'sine�

By letting

'0 <0 '0 'o ~0 "O , . 'O 0 '0 . 1 t
«t < 't j � 'L"Rt 'Rt'Rt~ I It' It'!t~" �.81!

equations �.38! and �.80! provide

Rt
0 0 0
11 12 13 a'cose�

UIt = < sink'+icosk'! 0 0 0
21 22 23

�.82!ib'

0 0 0
31 3" 33

a'sine
w

which can be analyzed to

0 0y '0 = Q a' sink'  c cose cl3 6 ! - b cosk cl2!
Rt 11 w w �.83.1!

y = g a'cosk'  c cose +cl3 4 ! + b' sink'c]2! �.83.2!

�.83.3!

�.S3.4!

YRt UJf a ' s ink '  c31 cosew~c33si new! - b ' cosk ' c32! �.83.5!

y =  a'cosk' c cose +c 3sine !+b sink c32 !n 0 0 0
It 31 w 33 �.S3.6!

Rt Q a ' sink'  C21COS6w 23 W

~o,, o oYIt = 4a'cask' c21cos6�+c235146 !

Similarly, equations �.39! and � ~9! Pro"'~

- b'cosk'C22$

+ b'sink'c22!
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rel
Yx

c
a'cose�

rel �.84!+ C  cosk'-isink'!
0

ib'C

Vz
c

a'sine
W

where the real part of the right hand side needs to be taken. To simplify our calculations we let

y = A + B sin ~t+9 !
re 1 1 �.85!

V = C + 0 sin ~t+92!
rel

�,8e!

V = E + F sin ~t+93!
rel

�.87!

�.88!B,O,F > 0

ln addition we let

�.89!R' R' Rj ~PI'qI' I j

Equations �.84! to �.87! provide the components A, C and E due to the current

0 x + 0 ZA = cllY c13V �.90!

�.91!0 X 0 Z

21 c 23 c

�.92!
0 x 0 ZE = c31Vc c33V

Similarly equations �.84! to �.87! provide

a'Cose�

�.93ib'=  cask'-isink'!

a'sine�

Multiplying �.93! by i and recognizing the simihrity with �,82! we let

where the phases e<, 82, 0> are to be chosen so that

Bexp   i 9 1 !

Oexp ie2!

Fexp ie 3!

c'
11 12 13
0 0 0

c21 c22 c23
0 0 0

c31 c32 c33

PR" PI

-'" qR" lI

'R""I
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~o ~o '0 "o
Rt R ' It I �.94!

"0 0 '0 '0

Rt R ' It I �.95!

o "o "o "o
Rt R ' It I �.96!

where V<4, Vtb, etc. are the bracket terms in equations �.83!. Equations �.83!, and �.93! to �.96! now provide

Sexp i91! = ~pR + VR + i ~pI + VI ! �.97!

+ y !

n
+ V !

�.98!

Fexp ie 3! = ~ R ' VR �.99!

Using �.88!, 8, D and F are the magnitudes of the right hand sides of �,97! to �.99!. Similarly, 9>, 9> and 93 are
the phases of the right hand sides of �,97! to �.99! which in general belong to the interval

�.100!91,92 93

Equations �.29!, �.35!, �.36! and �.40! now indicate that the foUowing non-linear terms require equivalent

�. 101 !

�.108!

linearization expressed as follows

~o ~0 ~o "o
"rel I "rel l = F C sin ~t + 91

y ]y   � F + C sin zt + 92!
rel re 1

n KorI
0 y 0 0 I F + C Slh  t ~ 9 !

"o o "o "0Vrell Vrelf = F + C sin >t + 92!

o o~ F o 0 + C o sin zt + 9 !
rel rel 3

y 1 v 1= F< C> s'   t+9>!rel rel

Itu I = C~~ vJ0

where from �.37!

-'o'o 2, 2 1/2

=   LC+0strt at+62!] + t E+Fsln u!t+63! j

�.102!

�.103!

�.104!

�. 105!

�.106!

�.107!
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and from [6] and �.64!

Re[i~823exP  i~i! ] �.109!

The equivalent linearization coefficients appearing in �.101! to �.107! are computed by minimizing the mean
square error between the left hand side and the right hand side of these equations over one period of oscillation [173.

Equations �.101!, �.102!, �, 104! and �.107! are special cases of the following equivalent linearization:

La+bsin T+ 0! ]   c+dsin~~ = f+c sin~
p �.»O!

where t = o!t and b, d ! 0. By minimizing

2 tl

� 2 j 2
E = dT[ f+c sin~ � I a+bsin T+ �!] I c+dsinT  !

P �.111!

we obtain

f = � J [a+bsin T+C! ]   c+dsin'7 ~ dT
2lr �.112!

c = � /' sinTI a+bsin ~+ 4] j c+dsin~   d~1

p

0

�.113!

CASEl: kl 2 d 2 0

f = sgn c!  ac + ~ cosO!bd
�.114!

�. 115!c = sgn c!  ad + bc cosC!
p

where

c�

�.116!sgn c! = 0 c=0

where b, d > 0 is assumed. These integrals, although more general than those computed in [171, can be expressed
in terms of elementary functions by distinguishing a number of cases.
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CASE2; d a IcI > 0withd>0

c 2p< 90 c! ad+bc cps C'!sin� d!+ +3ac+bdt 4- ~!]cpgC	 !lcl 2 c
�.118!

The values of fand c are functions ofa,b,c,d. eP

f = f a,b,c,d, C'!

c = c  a,b,c,d,o!

and therefore �,85! to �.87!, �.101!, �.102!, �.104! and �.119! allow us to obtain

�.119!

T

F = f A,B,A,B,O!, C = c  A,B,A,B,O!
p

<p
F = f C D C,D,O!, C = c  C,D,C,D,O!

�.120!

�.121!

  E F C 0 83 tl2 C = c   E F C D 8p ' ' ' ' 3 2

Similarly, by letting

�.122!

23 = B23R i823I I823Iexp ie4! �.123!

we obtain 4!! 823Icos zt + e4 + 2!
and using �.107!, �.124! and �.118! we obtain

�.124!

~p 8
C,�= ~ IB�I �.125!

and therefore

CfM Re ia[B23R '8231] xp� t!! �.12e!

Similarly, by minimizing the mean square error over a period of the left hand side minus the right hand side of

�.106! we obtain

2 2 2f = � sgn c!  ac + � 2 cpsC!girt  Ldd-! + ~2 cosa 1- d! !+ � da 1- c/d!   ~ I 7!
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~o DFFM = CE + ~ cos e3-62! �.127!

C = DE + CF cos�3 92
M �.128!

0
2~

2 2 1/2
d-, sin <+62![C+D sin T+62!]<[C+D sin x+92!] + [E+F sin >+93!] !'o"o

C

 y 'tan~
,~,i~vg

21T
2 2

1/2

dT[E+F sin ~+6 !] [C'+0 sin r+62!] + [E+F sin T+63!] ! �,131!
277

2TT 2 1/2
c = � f sin ++93![E+F sin .+6 3!] [c+D sin T+62!] + [E+F sin T+63!] !

0 �.132!

'Ibis completes the equivalent linearization of the hydrodynamic loads. The expressions for these loads, provided

below, have been spht into static  subscript o! and dynamic components  subscript l!, the sinusoid time dependence

exp input] has been dropped from the dynamic components, whiie the real part also needs to be taken in the dynamic

components.

F = 0.5p P C<F'o ~n F'o
�.133!

oF = [P  A -A ! + m ][VR I m PR PI +0,5p P C~C [sin61-icos61Hl w b o a Rt It a R I ' w e
�.'l34!

n 'o n'o'oF o = 0.5P�CD  D -D"!F + 0"F �.135!

Unfortunately, Ihe coefficients in the right hand sides of �.103! and �.105! cannot be expressed in terms of

elementary funcuons and, therefore, numerical quadrature wiU be used to evaluate them from:

2TT 1/2
  rt 2 2

F o o 1 / dr[C+0 sin <+62!] [C+D sin�+62!] + [E+F s'n x+63!] ! �.1 "9!
2n
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�.136!

F = 0 5P CD  D -0' !F + 0 F ! �.137!

r

+ 0,5= CD.,'� -D !C  sine2-icos32! + D C  sin03-icos93!! �.'138!
!

M =  m~-m"! F
Ho �.139.1!

3 o-0.5o�C<P ' r CfM 23!+i B23Rj �.139.2!

The following linear expressions for the structural damping forces and moments per unit length are used

-6 iz P +>PI! �.140!

pC 4
23R 23I !

where the sinusoid time dependence exp[irat] has been dropped, the real part needs to be taken in �.140! to �.143!

and 5<, 5<, 5n, 6< are structural damping coefficients, which may be frequency dependent. The structural damping
moments EA and en are omitted because their effects may be represented by A~ and D't. The values 5<, 5<, P, 9<

are expected to be much larger than those encountered in conventional tensioned steel risers because of the

multilayer construction of typical compliant risers.

FHl � Lp Ab+m j[V +iv j + m >  q +iq !

q 'o"o+ 0.5p�CD  D -D '!C + 0"C ! sin.' -icos',>!

r,

FH1 ~p Ab+m ]LVR I j R ~ Iw b a Rt It a

T

MH1 �  m -m !C>  sine2 icos92! " Ja  B23R 23!"0   rl 0 2

2.4.2.3 STRUCTURAL DAMPINC FORCES AND MOMENTS

 qR
g" = -g"i~ r +ir !

R

�.141!

�.142!

 >.143!
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2.4.3 NON-I.INEAR DYNANIIC EQUATIONS FOR MONOCHROMATIC RESPONSE

We now derive the governing dynamic equations by
~ incorporating the external forces and moments linearized in Section 2.4,2 I'or monochromatic response

in the structurally linearized riser equations around a static configuration derived in [61;

~ non-dimensionalizing all forces by the maximum static effective tension T' and all lengths by the
unstretched length L of the riser.

For the reader's convenience, we repeat the definition of the following parameters first introduced in [6!
I

e ~ T /EA  ~.144!

�.145!

�.146!
rlh' - >/~. I- = g/~ I

cJ /I.  IT T'
i i OlD

/L k T,'!qrl 2 g, I/2

�.151!

rinl+tn, lTI = m+I, m = m+ttt  ~.>5<!

T a  >.153!

ln addition, we define the following coefficients:
I

C" = L[t � -4 ! + ~,  >.154!

I

C =05P f/om �.] 55!

�.156!C = L[oJb + maj/Tom

~ eliminaung the sinusoid time dependence exp[itot};

~ separating real and imaginary parts in the resulting equations; and

~ GI /T L , c ~ ET. /T L , c ~ EI /T Le e oia ' e e ota ' e e oiD

E uiL  ra /T' !
1/2

K ~ cp A  m~ T' !
i i r olD

L e /3T !ZZ I/2

cg /L  iD
I/2

I.   ~/P~! X" L  ttt /~ !

where m T< is the average value of m T< along the length and

 ~.14~!

 >.148!

�.]49!

 Z.15O!

�.151!
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1 ts o"'I 1 P1I o 'l l 4~1I

2 r ~ di 02IF2 + q3IF3 - Z h PI C C easel + 4 oR

Ci   o i 0 y 0 0 0
It 12 e 12PI 22 I 32 I

o p o
12R 22R 32 R �.169!

-Z h q -2.~.B -o qI - [ C' -C !C + C C ] sine

YRt c22~ ke  c I2PR c22qR c32rR! - ce  c12PI c22qI c32rI
o o,"y' o o o "y' o o o

Q11s Qoccll + noQl I T 21I 0 Tl I - B12I 1 ~ 8231 3z n n n

dn Kovoh~qI + 2Z ~ B12R + 8~ qR + L C ~-C "!C +C C ]'cose2

1Rs o 1R o 1R o 1R oqlR 13R 1 B23R 2= T n~ + n~T � ~A< - 0< ~ � B F - F

I d d "o
R i 13I I 2

<2hlr � 27 .g � 5~ r -  C ~-Cdn!C sine

dn o~o . in 0 0
-C C sin 93 - C VRt 32 k  c12PR + c22qR

32 R!   12PI 22ql 32 I!~
"y' o o + o

�.17:!

iE ~o o y' o o o "y' o o o
- C YIt c22 ke  ci2PI+cZZqI c32rl + ce 12PR+c22qR+c32rR! � 171!



35

g" = T~~ +~ T n<q< q<n< B F g F
1Is o 1I '"o 1I "o lI o"1I 13I 1 23I 2

y + 2 ~ >, g a ', +   C C n ! C g p2 dg dn ~o
13R R 2

a~ "o<o i~ "p , o -y' o p
C C cps63 - C VI c32   c12pI+c22QI

o "y' o o o
32 I e 12~R 22~R 32 R

e"1Rs - es '1Rs ' e -e'  'o"1R p '1R

2

T 23R i 1I 0 13!

'0 12I 1 1 0 12! 0 13I

MOM M 2 MOM fM B23I 23I

e~l Is es' l I e e o 1I o 1I
n   4 n

2

T B23I Z Xi lR - AoB13R oB12R

1 i 0 12R G 13R

'o , dg ~o
MOM M 2 MOM fM 23R 23R
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e11Rs es 1p 01R   e ~e o 1R o 1R
n P n nr. ~ 0n

2

812RN~ ~ �/~ ! B13R - ZLX �01I

"8�, -,"8�,!+   ',. - ",! ,'8�, ~ ~,"B�,�

-  ~ -c "! o" n" i n"o" !
e 1Is es 1I 1I e e o lI o 1I

2

12I Ho   ~ 'l31 ~ '  1R

o 12R "o 23R i i p 12R o 23R

e~g~ ~ 1 pl Q   e  ~ P !  QZg  + Q QQ !
e 1Rs es 1R 1R e e o 1R o 1R

2

13R Ho 12R ~ i 1 I o 23 I

o813I i i!  o823I o813I

e lls es 1I lI e e o 1I o lI
nn n n 0   o 4K +

2

+S13I~H ~/~!B12I gt X ZQIR

C +

o823R o813R i i o 23R o 13R
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+ l?"!
13Rs '1R 0 23R 0 12R

13Is ' lI ' 0 23I 0 12I

{2.184,!

12Is lI o 13I o 23I �.1SS!

PR = 1R
n

�.186!

r
p=Te-'~r>i?q

Is lI om '"0 I o I {2,187!

qRs 0 "12R o R 'o R �.188!

�.189!
Is 0 12I 0 I 0 I

Rs 0 13R 0 R opR �.190!

� !813I - qI " PI �.191!

Equations �,168! to �,191! form a system of twenty-four first order coupled non-linear ordinary differential

A~ Q~ I?"1R' l I' lR' lI' ~23R' 231'~13R'~131'

T

12R' 12I; R' I' R'qI' R' Ij �.192!

Twenty-four boundary conditions are in addition required to complete the statement of the dynamic problem. In

this work. single leg multitube riser configurations with prescribed dynamic displacements and angles at both ends

equations in the following twenty-four unknowns:

1R' l I ' lR' 1! ' 1R' ll' 1R' l I'
ri ri. 0

�.182!

�.]83!
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�.193!823 = 813 812 P q = r = 0 at s = 0

823 23 1823> >]3 813 't813 ~ 812 = 812 1812 at s 1 � 194!

�.195!p = p' + ip", q = q' + iq", r = r' + ir" at s = 1

�.196!823 "- $1 - 51 s'tn 9

�.197!813 f1 cose 51n " - '3 coso "o 1 o

812 = p1 cos 9 cos ~ - 91 sir! g �.198!

are studied, These are estimated from the motions and rotations of the supporting platforms in a surface wave given
by �.20!. In this calculation the following equations are also useful
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3. SOLUTION METHOD

3.1 INTRODUCTION

Genetal methods for the solution o  two-point boundary value problems can be found in Keller [ l9], Ferziger [20!

and Pereyra [21]. We start our discussion by considering the following general boundary value problem:

~v' = 4 s,w!, g  �!,  !!! = Q �.]!

where

~  !' denotes derivative with respect to s

~ w = [w t s!,w2 s!,...,wv s!! is the solution vector

,,..., T~ f = [fl,f2,...,fv]

'g= [gi42-.gv]

~ 0 5 s 5 1 and[ [ denotes transpose

Embedding solution methods introduce a continuation of �.1! to

w' = ~ s,w;c !, S [i~ O! . w  l !;c ! ] = 0 �.2!

where a is a continuation parameter 0 < c < 1, and when c = 1 equations �.1! and �.2! are identical.

Using the embedding technique, a sequence of problems with values of c such that 0 = ct < p « ... c = 1 are

solved. The solution of the problem involving c< uses as iniual approximation the solution of the problem involving

The non-linear static solutions prcscntcd in [2] to [5] and the eigensolutions presented in [6] and [7] for

various compliant riser configurations usc the above embedding method specialized to the particular situation. lt

was found that the following two rules in selecting �.2! make the embedding process robust and very efflcienL'
~ Thc problem corresponding to c = 0 should be easier to solve than the initial problem  c = 1! so that we

can start the solution process with no difficulty.

~ The problem corresponding to a = 0 should express the balance of all major external and restoring
forces of' thc original problem correctly everywhere in 0 < s 5 l.

So in choosing �.2! for a = 0, it is advisable to use our intuition about the physi'cs of the problem at hand and then

derive initial approximate solutions for c = 0 using asymptotic techniques or a combination of asymptotic and

numerical techniques  for example involving the solution of a small system of non-linear algebraic equations or the

solution of a system of linear equations!. This is thc solution method followed in this work.
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3.2 STATIC PROBLEM SOLUTION METHOD

As indicated earlier, the first step in the solution process followed in this work is the solution of the non-linear

static problem in the presence of mean forces and moments due to currents and waves possibly involving static riser
ocean bottom interaction. The non-linear three-dimensional static equations for a flexible riser were presented in
section 2.4.1  equations 2.42 - 2.54!.

The solution of the set of non-linear static equations is obtained using a non-uniform grid finite difference

method, Pereyta [21], The non-uniform grid is necessary to permit an efficient resolution of internal or boundary
layers in the riser. '%e solution of the finite difference equations is based on a modified Newton's iteration method
coupled with a deferred correction technique also described in Pereyra [21]. The numerical solution scheme

employed to solve the stauc equations uses the embedding techniques described in the previous section, which
require an initial slatic approximate solution, The numerical scheme uses the approximate solution of the problem
and yields a more accurate so'lution which makes the absolute error less than a prespecified tolerance. During the
solution process, additional grid points may be inserted automatically to reduce and equidistribute the error on the

final mesh. The computer implementation of this solution scheme uses the NAG Fortran mathematical library [22].
The initial approximations of the solution of the static problem are either analytical  for two-dimensional cases! or
numerical.

We analytical approximate solutions of tw~mensional static problems are derived using asymptotic techniques.
These analytical solutions correctly account for all major external and restoring forces in a riser equation and,
therefore, provide excellent initial approximations of the solution of the non-linear static problem. For this reason

fast convergence of the embedding sequence and the associated Newton-Raphson iterations employed in the
numerical solution of the non-linear problem is observed in most cases.

References [3] and �] provide an analytical two-dimensional approximate solution for the case of buoyant risers
 risers with small effective weight! in the presence of current, while reference [5] provides an analytical technique to
compute the static solution for catenary risers  risers with large effective weight!. The above two analytic solutions
are used also in the present work. For the buoyant riser in a current case, the major external force is the current

force which ts balanced with Ihe riser restoring forces to determine the initial approximation. For the catenary riser
case, the major external force is the weight of the riser, which is balanced with the riser restoring forces to determine
the initial approximation,

An additional asymptotic technique was developed to provide an analytical approximate static solution for the

case of a catenary riser experiencing static riser~can bottom interaction. In this case the major external forces ate
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the weight of the riser and the static bottom interaction force over a portion of the riser, both of which need to be

balanced wIth the riser restoring forces to determine the initial static approximation. Appendix I presents an

analytical approximate solution for catenary risers experiencing bottom interaction, For the other asymptotic

solutions the reader should consult references [3], [4] and �] for a detailed account.

An alternative to using analytical asymptotic techniques to determine an initiaI approximation to the static

problem is to use an already existing two4imensional or three-dimensional static solution for different excitation

conditions  wave, current or riser motions! and/or different boundary conditions  static displacements at the top,

static angles e,t.c.!. These different excitation conditions and/or different boundary conditions are madiTied

Incrementally with the continuation parameter r. introduced in section 3.1, until they reach the actual excitation

conditions and/ar actual boundary conditions for the problem at hand. Thus for s=l the solution obtained

corresponds to the excitation condiiions and/or boundary conditions of the actual problem. In this way, we can also

march from a two-dimensional static solution to a three-dimensional static solution by embedding on the three-

dimensional excitation characteristics and/or boundary conditions, [21, [3] and [5],

We initial approximation ta the static solution is the single most important factor for fast convergence of the

Newton Raphson iteration and care should be exercised for the rational selection of the form of the approximate

solutian to use in each case. An example of a special, relatively difficult, static problem and the best approach to

solve it follow. For the case of a buoyant riser in a weak ar zero current, the "buoyant riser in a current" analytic

approximation is not valid and Newton's iteration inay break down if such an initial approximation is used. In this

case it is preferable to analyze first the buoyant riser in an artificial moderate current, using the buoyant riser initial

approximation, and then use the numerical solution for the artificial moderate current as an initial approximation to

solve for the buoyant riser in the weak or zero current using embedding. This methodology was found to provide

fast convergence of the Newton Raphson iterations.

The final element in the static solution technique implemented is that once the static solution and then the

dynamic solution is obtained for a particular excitation, the dynamic riser motions are detemtined. Then the mean

static forces and moinents due to current, waves and the riser dynamic motions can be estimated more accurately in

equations 2.133, 2.135, 2.137 and 2.139. These more accurate forces and moments can then be used to solve the

non-linear static problem and improve the static solution. This iteration step can be repeated, until a satisfactory

converged solution is obtained. This technique allows us to account more accurately for the mean configuration of

compliant risers in the presence of waves and small dynamic motions.
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3.3 DYNAMIC PROBLEM SOLUTION METHOD

After the static riser problem is solved, the structural part of the non-linear dynamic riser equations is linearized

around the static configuration assuming small dynamic motions and rotations. Then the non-linear drag forces and

moments as well as the non-linear riser-ocean bottom interaction forces are harmonically lineaiized for the solution

of the dynamic riser problem. This results in a non-linear boundary value problem. The formulation of the dynamic
compliant riser problem was already presented in detail in Chapter 2 of this report.

The solution of the set of dynamic equations is obtained using a non-uniform grid finite difference method,
Pereyra [21]. Me non-uniform grid is necessary to permit efficient resolution of internal or boundary layers in the
riser response. The solution of the finite difference equations is based on a modified Newton's iteration method

coupled with a deferred correction technique also described in Peieyra �1]. This method uses an approximate
solution of the dynamic problem and yields a more accurate solution which makes the absolute error less than a

prcspecified tolerance. During the solution process, additional grid points may be inserted automatically to reduce
and to equidistribute the error on the final mesh. The computer implementation of this solution technique uses the
NAG Fortran library [22].

The numerical technique used for the dynamic problem is similar to the technique used for the static problem.
Again the initial approximation is the most important factor in ensuring fast convergence of the Newton iterations.
For the estimation of the hydrodynamic forces and moments the local wave and curtent characteristics are evaluated
on the static riser configuration. The procedure followed to solve the non-linear dynamic problem is as follows.

First the non-Unear drag forces and moments and bouom interaction forces are approximately linearized and the
resulting linear dynamic equations are solved using a non-uniform grid finite difference technique for solving a
system of linear ordinary differential equations. The above approximate linearization of the drag faces and
moments, replaces the product IV~I V~ by A V< where A is a local approximate relative velocity using an
estimate for the riser dynamic motions. In the first iteration the riser dynamic motions are assumed to vary linearly
along the length of the riser from the given riser top dynamic motions to the given riser bottom dynamic motions. In
the second and following iterations the approximate linear riser problem is solved using as an approximation for the

riser dynamic motions the resulting motions of the previous iteration of the approximate linear riser problem. In this

initial approximation, the effect of bottom interaction in the dynamic problem is only accounted in the region of
static riser-ocean bouom interacuon.

This linear dynamic problem is solved a few times, iinproving each time the approximation to the riser motions

and also improving the overall initial approximation to the non-linear dynamic problem, Once a satisfactory linear



43

solution is obtained, it is used as an initial approximation to solve the complete non-linear problem using the
complete equivalent linearizauon technique for the drag forces and the riser-bottom interaction forces and using the

Newton Raphson technique as was outjined before.



4, COMPARISON WITH OTHER THEORIES

The solution techniques described above have been implemented in general computer codes for the static and

dynamic analysis of single lcg multitude flexible risers. ln this chapter, comparisons of the results of our theoretical

formulation with other theories for the analysis of the static and dynamic response of fiexible risers will be presented
in order to validate the proposed formulation.

4.1 COMPARISON WITH CABLE STATICS AND DYNAMICS TECHNIQUES
The proposed formulation was compared with the cable static and dynamic analysis techniques developed by

Triantafyl lou et al [8] for a catenary riser using a cable idealization. The characteristics of the riser system analyzed
are presented in Table 4.1. Initially the cable static solution was determined io obtain the static angles at the bottom

and at the top of the riser to use as boundary conditions in our riser static solution. niis is required, since the riser
stauc formulation assumes fixed  clamped! boundary conditions with prescribed static angles in the riser ends while

a cable formulation allows only for pin-supported boundary conditions  bending effects are not modelled!. Such
choice of the end angle boundary condiiions is likely to reduce bending effects in the comparison of the riser and

cable idealizations. Using the above static angles at the riser ends, the riser static and dynamic solutions werc
determined. The riser analyzed has a length of 140 m, in water depth of 90 m. The static boundary conditions for our
riser solution are:

x L! = 115 m
y L! 60 m
x�! = y�! = 0 m
+0! = -13.6'
~! = 62.7

The static excitation conditions used in this comparison corrcspond to linear current varying Rom 1.03 m/s at the

bouom end of the riser  y=0! to 1.5 m/s at thc top of thc riser. Thc dynamic excitation consisted of top end dynamic
motions in thc x and y directions with an amphtudc of 1 m and zero phase between the motions  lxt L!I ~ 1 m,
ly t L!l = I m and zero phase angle!. Two excitation frequencies equal to 0.6 and 0.8 rad/s were used. All other riser

dynamic motions and rotations at the ends were assumed to be zero, and no ~aves were present. The resulting
configuration is two-dimensional in the x-y plane.

Figure 4.1 presents the static riser configuration for the above conditions, while Table 42 presents thc
comparisons for the effective tension at the top and bottom of the riser from the static and dynamic solutions using
the riser and cable formulations. 'Ihe agreeinent for the static effective tension at the riser ends is very good. The

agreement of the dynamic results is also very good both in the amplitude of the dynamic tension at the top as well as

in the phase of the dynamic tension at the top. No comparison of curvatures was performed, because the cable

idealization does not include the effects of the actual clamped boundary conditions on the curvature.



45

Table 4-1: Characteristics of Compliant Riser

ST&I I:GNF IGURAT ION

E-
P
T
H-

Curve t

M !

-B -t20 -ee -28

HORIZONTAl AXIS  tt!

4.2 COMPARISON WITH A HYBRID FINITE ELEMENT TECHNIQUE, [23]

The present formulation was also compared with the two-dimensional non-linear static and dynamic analysis

presented in reference [23]. McNamara et al, [23], used a time domain hybrid finite element formulation to analyze

the static and dynamic performance of flexible risers. This formulation uses the usual beamwolumn equations of the

Bernoulli-Euler bending theory extended for large deformations and introduces the inextensibility condition as a

geometric constraint on the axial deformations leading to a hybrid or mixed formulation of the resulting equations,

Thus the axial force is independently interpolated and only combined with the corresponding axial displacemems via

L
D =DC0
D;

mT
m,<
W,
EA
EP't

CD
Cr

= 140m
= 0.3048 m

= 0.269 m

= 0,9576 rn
=119.6 kg/m

= 74.79 kg/m
= 439.35 N/m

= 4.882x10s N
= 3.6x10 Nm~  for riser formulation only!
= 1.0

= 0.05

Figure 4-1: Static Configuration of Catenary Compliant Riser Using
Riser and Cable Idealizations
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Table 4-2: Static and Dynamic Comparison for Catenary Compliant Riser
Using Riser and Cable!dealization

L=140 m 4, L!=62.6 Q �!=-13.6' x, =1 l5 m y, =60 m
V, y&!=1.03 m/s V, y=60!=1,5 rn/s

STATIC COMPARISON

RISER
T L! = 65.07 kN
T�! = 41.7 kN

CABLE

T L! = 65 kN
T�! = 40.5 kN

Ixt L	 = lyt L!l = 1 m Phase =0

DYNAMIC COMPARISON

CABLE

Ti L!
16.40
27.6 l

RISER

T, L!
18.87
30.58

Phase

122.2
128.8

deg

0.6
0.8
rad/s

Phase

117.3
124.2

deg

a Lagrangian constraint�3].

McNamara et al, �3], assumed a pin-supported riser in contrast to the present formulation which assumes the

more usual clamped boundary conditions. For the ptesent analysis the static riser angles at the two ends wete

selected equal to the stadic riser angles determined from the hybrid finite element technique to approximate the

pin-supported configuration and minimize bending effects in the comparison. The above difference, however

affects the prediction of bending moments in the riser particularly close to the riser ends  difference between

pin-support and fixed support!. The static boundary conditions are as follows in this case:

x L! = 150 m
y L! = 150 m
x�! = y�! ~ 0 m
y�! = -71.18'
4i L! 82.81

The dynamic excitation for this comparison consisted of top riser motion due to a sinusoid surge motion of the

supporting vessel with amplitude of 2.01 m with an excitation period of 14 s. The resulting configuration is

two-dimensional in the x-y plane. Figure 4.2 presents the static configuration for the riser analyzed. Both the

present formulation prediction  continuous line! and the hybrid finite element inethod prediction  circle syinbol! are

shown. The agreement is very good. Table 4.4 presents a comparison of the horizontal and vertical projections of

Results will be compared for the motions and forces on a flexible catenary riser connecting a tanker to a subsea

tower. The characteristics of the riser are presented in Table 4,3. The riser has a length of 350 m and is supported at

a subsea tower point at a depth of 150 m and at a surface platform displaced horizontally by 150 m The water depth

is equal to 350 m, lt is assumed that the riser is full of sea water. No external current is present.
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the static effective tensions at the top and bottom of the riser predicted from the two techniques, Table 4.4 also

presents a comparison of the maximum dynamic vertical projection of the effective tension at the top and bottom of

the riser predicted from the two techniques. As can be seen from Table 4.4 the agreement is very good in all cases.

The agreement with the siauc moment predicted by the two techniques was also very good except close to the riser

ends where the different boundary conditions affected the static riser bending moments. There was no sufficient

information in [23] to compare the predictions from the two methodologies for the dynamic bending moments in the
i'I sef,

Table 4-3; Characteristics of a Catenary Riser adapted from �3]

0.5

0.25

O
1

1
M

-4.25

-0.5

0.25 0.375 0.5

STATIC X

L
D,=D4
D;

mT

m,<
W,
EA
EPtil

CD
Ct

= 350m
=026m

=0,20m

= 0.8168 m
= 89.7 kg/m
= 54.42 kg/m
= 346.1 N/m

= !.538xlO~ N
= 2.096.104 Nm'
= 1,0

= 0.0  no information was available from �3j!

Figure 4-?.: Static Configuration of Catenary Riser from [23!

CATENARY RISER STATIC COMPARISON
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Table 4-4: Static and Dynamic Comparison for Catenary Riser from [23]

L=350m, g  L!=82.81', Q �!=-71.18', x =150m, y =150m, V,=Om/s

STATIC COMPARISON

RISER
V L! = 87.1 kN
V�! = 34.5 kN
H L! = 11.4 kN
H�! = 11.42 kN

HYBRID FEM
V L! = 91.45 kN
V�! = 35.83 kN
H L! = 11.57 kN
H�! = 11,92 kN

Ix, L!I = 2.01 m Phase = 0' Period = 14 s

DYNAMIC COMPARISON

HYBRID FEM

V  L! = 1,5 kN
V, �! = 0,20 kN

RlSER

Vt L! = 1.532 kN
Vt'�! =0.173 kN

V = vertical force
H = horizontal force

4.3 COMPARISON WITH TIME DOMAIN FINITE ELEMENT RISER DYNAMIC
SOLUTION

Comparisons with the two4imensionai static and dynamic analysis of flexible risers presented in references [24]
and [25] will bc presemed next References [24] and [25] used a general purpose non-linear finite element prcrgram

Thc static ol'fset of the floater for thc condition analyzed was 225.7 m in the direction of thc current flow. The

current profile used is piecewise linear and has the following characteristics;

watez Depth  ra! I 0 25 50 100 200 317
Curzent  rn/e! I 1.71 1.42 1.25 0.85 0.70 0,50

References [24] and [25] assumed a pin-supported riser in contrast to the present methodology which assumes

to analyze large amplitude dynamic response of flexible risers. Results will be compared for the motions and forces

on a flexible steep. wave riser configuration. The flexible riser system is located at 320 meters water depth, The
upper point of the riser is connected to a floater 22 meters below the water surface and follows the motion of the

platform. The system is exposed to current and waveL The lower cnd point is located 9 meters above the sea floor.

Ihe characteristics of the riser arc presented in Table 4,5. The riser has a length of 420 meters. It is composed of two
bare sections and two buoyancy sections. 'Ihc bare sections arc uniform in characteristics. The first buoyancy
section starts 30 m away Irorn thc lo~er end of the riser and is 60 m long. We second buoyancy section starts 90 m

away from the lower end of the riser and is 30 m Iong, T7ie two buoyancy sections provide a smoother curvature in
the lower region of the riser.
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c/amped riser support. For the present analysis the static riser angles at the two riser ends were selected to be

approximately equal to the static riser angles determined from the finite element technique. The difference in the

boundary conditions for the two techniques, however, affects significantly only the prediction of the curvature close

to the riser ends. The static boundary conditions for the case analyzed are as foUows:

x L! = 225.7 m
y L! = 289,0 m
x�! = y�! = 0 m
$�! = 65o
<I> L! = 80

For the dynamic comparison, a regular surface wave with amplitude of 15,5 m and period of l6 seconds  circular

frequency 0.392 rad/s! was used. In addition, the top end of the riser was excited by a heave motion amplitude of

8 99 m with zero phase angle and a surge motion amplitude of 10.37 m with -90 degrees phase angle relative to the

wave crest at the top end of the riser, The resulting configuration is two-dimensional in the x-y plane.

Figure 4.3 presents the static configuration for the riser analyzed. Both the present formulation prediction

 continuous line! and the finite element technique prediction  circle symbol! from [24] and �5] are shown. As can

be seen the agreement is very good. Figure 4.4 compares the static effective tension for the two formulations along

the length of the riser. The continuous line corresponds to our solution, while the square symbol corresponds to the

finite element technique soludon. The maximum effective static tension is about l50 kN, at about 25 m from the

lower end of the riser. The agreement is very good, except near the riser ends where the effect of the different

boundary conditions is more significant, although still relatively small.

Figure 4.5 presents a comparison for the two formulations for the predictions of the dynamic effective tension

along the length of the riser. Since the result from the time domain non-hnear finite element analysis is not sinusoid

in time, the maximum, minimum and average dynamic effective tension in one cycle of oscillation from the finite

element analysis is ploued  circle. square and triangle symbols respectively!. Our definition of the average dynamic

effective tension from the time domain program is to take the mean of the absolute values of the maximum and

minimum dynamic effective tension. Two curves from our analysis are also shown. The first corresponds to the

dynamic effective tension based on a static configuration in which wave and dynamic riser motion effects are not

included, while the second corresponds to the dynamic effective tension based on a corrected static configuration

accounting for waves and dynamic riser motion. Both curves from the present formulation are in fair agreement with

the average dynamic effective tension  square symbol! predicted by the finite element technique except near the top

end of ihe riser where the present ineihodology overpredicts the average dynamic effective tension.

Since it is difficult to determine from the time domain finite element technique a single dynamic tension
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Table 4-5: Characteristics of Steep-Wave Riser adapted from [24] and [25]
=420 m
= 0.2755 iIL
= 0.2008 m

= 0.9 m  in buoyancy sections!
=9.6x10 N
= 3.417xl0 Nm~
= 1.0

= 0.0  no information was available from [24],[25]!
= 0.8655 m  in bare section! ~ 2.827 m  in buoyancy sections!

D =A0
D;

EA

CD
Cr
pea

Riser sections from lower point
I 30m l 60m l 30m l 300m

I Bare l Buoyancy I l Buoyancy II f
Bare
112.4 kg/m
61.1 kg/m
503.2 N/m

Buoyancy II
241.7 kg/m
652.1 kg/m
-1118.0 N/m

Buoyancy I
334.8 kg/m
652.1 kg/m
-2285,0 N/m

fn-

m,<=
W=

amplitude, Figure 4,6 was prepared to compare the maximum total effective tension  static + dynamic! from the two
formulations, Again two curves from our analysis are shown, corresponding to the corrected static configuration
accounting for waves and riser dynamic motions and to the initial static configuration without wave and riser motion

ef'ebs.. The square symbol corresponds to the finite element method prediction. As can be seen the agreement
between the two methodologies is very good. The corrected dynamic result is more accurate than the initial dynamic
result from our methodology. The present methodology overpiedicts the total effective tension at the top of the riser
�77 kN as compared to 165 kN for the finite element technique at the top of the riser! and underpredicts the total
effective tension at the lower part of the riser �67 kN as compared to 173 kN for the finite element technique at
about 25 m from the lower point of the riser!. Again these differences may be partly attributed to the different
boundary conditions used by the two methodologies. The non-linear terms employed in the time domain finite
element solution do not appear to significantly affect the response even under extreme excitation conditions. It is
noteworthy that our linearized frequency domain formulauon reproduces the results of time domain non-linear
formulaiions to the degree seen in Figure 4.6. Such a favorable comparison is, ho~ever, expected to be vahd when
the dynamic effective tension is relatively small compared io the local static effective tension at all pomts along the
length. There were no data available to compare the dynamic bending moment predictions from the two
formulations.
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F'igure 4-3: Static Conliguration Comparison for Steep-Wave Riser

STEEP WAVE RISER - STATIC COMPARISON

0.75

0.5

0.25

0
0 0.25 0.5 0.75

STATIC X

4.4 SUMMARY OF COMPARISONS

The proposed methodology for the analysis of the static and dynamic response of flexible risers was shown to be

in good agreement with three independent analyses, the cable analysis of reference [5], the hybrid finite element

analysis of reference [23J and the general linite element analysis of references [24] and [25]. Some additional riser

examples will be treated in the following section. We could not locate data to compare the proposed methodology

for the case af a catenary riser experiencing ocean bottom interaction.

Comparisons with experimental results are still required to verify the validity of our methodology in predicting

riser motions, effective tension and bending monients. The authors could not, however, locate appropriate

AU the configurations compared assuined pin-supported conditions in contrast to the more used fixed  clamped!

boundary conditions for flexible risers. Clamped boundary conditions may result in boundary layers at the ends of

the riser. Such layers require a large number of finite elements to analyze accurately the response. The proposed

solution method using an adaptive non-uniform grid finite difference technique allows resolution of these boundary

layers in an efficient manner.
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experimental data needed in such a comparison.
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Figure 4-4: Cotnpanson for Static Effective Tension

STEEP WAVE RISER COMPARISONS

STATIC EFFECTIVE TENSION  kN!



53

42

210

105

4G
0

0

Figure 4-5: Comparison for Dynamic Effective Tension
A =15,5 m, T=16 s, Ix <I=l0.37 m, phase -90, Iy t I=8.99 m and phase  P
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Figure 4-6: Comparison for Total Effective Tension from the Two Formulations
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5. ADDITIONAL NUMERICAL EXAMPLES

In this chapter, some additional and more detailed results wdl be presented from the dynamic analysis of flexible

risers. Three riser systems were analyzed, a shallow water buoyant riser, a shallow water catenary riser in a

two-dimensional and a three-dimensional configuration and a deep water catenary riser experiencing riser ocean-

bottom interaction.

5.1 SHALLOW WATER BUOYANT RISER

The first case analyzed is a buoyant flexiblc riser in the presence of current and top dynamic excitation. The static

configuration for this riser has been analyzed in reference [3]. The structural design details for this buoyant riser can

be found in reference [26]. The characteristics of this riser are presented in Table 5.1, The riser analyzed in this

section is made up of two flexible tubes with inner diameter of 85.7 mm and outer diameter of 122.9 mm clamped

together. The riser has a length of 88.392 m and is located in water depth of 80,77 rn, The lower end of the riser is

located 7.62 m from the ocean boitoin. The value of the effecuve weight of the riser is taken constant because it is

assumed that buoyancy is provided by smail uniformly distributed modules. Due to the presence of strain relief

units at the ends of the riser. the following values of bending and torsional rigidities at s=0 and s=L are used. EPn=

6.6 kN,m, EI<< 22.4 kN.m, GP= 1.164 MN.m . These rigidities are assumed to decay linearly to the values in

Table 5.1 within 10 m from s=0 and s=L. The static boundary conditions used in this case are:

x L! = x�! = y�! = 0
y L! a 70.1 m
g0! =90
~! = 90'
e L! = 0'
z L! =0

The condition analyzed involves twMimensionai excitation  no torsion! by a unidirectional linear current with

V��! = !.03 m/s and V, h�! = 1.55 m/s. lhe dynamic excitation consists of top end dynamic motion of the riser in

heave and surge. 'Hm heave amplitude  x>! is 1 m and the surge amplitude  yt! is also 1 m with zero phase angle

between thc two motions. ate exciting frequency is 0.77 rad/s close to the second natural frequency for this riser

configuration as was presented in reference [6], where the natural modes for this riser have been analyzed.

Figurc 5.1, adapted from [3], present the static results for this riser configuration. The static configuration and the

siatic angle along the length of the riser are shown in the top figurc in Figure 5.1, while the static effective tension

and static curvature in the q direction along the length of the riser are shown in the bottom figure in Figure 5.1,

Figure 5.2 presents the dynainic results for this particular excitation. In the top graph of Figure 5.2, the dimensional

p and q dynamic riser motions are shown as a function of the non-dimensional arc length. In the left lower graph in

Figure 5.2 the non4imensional dynamic effective tension  continuous line! and the non-dimensional dynamic shear
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force in the   direction  dotted line! are shown as a function of the non-dimensional arc length. In the right lower
graph in Figure 5.2, the non-dimensional dynamic curvature in the q direction is shown as a function of the riser arc
length.

An important result to note, is that there are sharp boundary layers close to the riser ends and the values of

curvature and shear are larger at these points and particularly at the top of the riser  inherent buoyant riser weakness

at these points!. The maximum static effective tension for this case is estimated to be 7.974 kN, while the maximum

dynamic effective tension is 2.4 kN at the tap of the riser. The dynamic shear force at the top is also significant 3.8

Since buoyant risers have a small static effective tension, dynamic effects are potentially very important. For
relatively small dynamic excitadons, the dynamic tension is large and can exceed the small static effective tension.

'Ihis means that the total effective tension can become negative over a part of the cycle and the length of the riser

and may lead to partial efl'ective compression of the riser possibly causing "dynamic buckling" in the riser tubes and
very large bending stresses.

An additional concern in this case is that one of the basic assumptions of the structural linearization used in our

methodology concerning small dynamic quantities compared to the static quantities may be violated  e.g. dynamic
vs static efective tension!. As a result for buoyant risers, the proposed methodology inight reach the limit of its

acceptability with sinaller dynamic excitations than in a catenary riser case.

5.2 SHALLOW WATER CATENARY RISER

The second case analyzed is a shallow water catenary riser in the presence of currents, waves and dynamic
excitation in a two-dimensional or threeWmensional configuration, The static configuration for this riser has been
analyzed in reference [5J.

The heavy riser with c~ configuration analyzed consists of a single uniform flexible pipe with inner
diameter of 269 mm and outer diameter of 304.8 mm. The overall riser characteristics are given in Table 5.2. The

riser has a length of 140 m and is located in water depth of 90 m. The lower end of the riser is located 30 m from

the ocean bottom. Due to the presence of strain relief units at the riser ends, the following values of bending and
torsional rigidities at ~ and s=l are used: EI~~ = 72x10 Nm~, Eon = 72x10 Nm~, GP = 23.28xI0 Nmz. These

rigidities are assumed to decay linearly to the values given in Table 5.2 within 10 m from s=0 and s=L.

'lhe two-dimensional and three-dimensional static boundary conditions used in this case were
x�! = y�! = 0
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Table 5-1: Characteristics of Buoyant Riser from [3]
= 88.392 m

= 0.1229 m  of single tube!
= 0.0857 m  of single tube!
= 0.31 m  of tube bundle!
= 0.20 m  of tube bundle!
=0.93 m

= 237.4 cm~
= 115.4 cm~
= 49.93 kg/m
= 40.47 kg/m
= 82.44 kg/m
= 50.32 kg/m
= 2.92 N/m
= 2.67xlos N
= 3.3x10 Nm~
= 1.22x104 Nm
= 5.82x10 Nm~
= 820 kg/m~
= 3.45 Mpa
=0 m/s
= 1.0

= 0,05

= 0.05
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Figure 5-l: Static Results for Buoyant Riser from �]
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Figure 5-2: Dynamic Resuits for Buoyant Riser
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x L! = 60 m
y L! = 60m
4�! = -90'
4 L! = 90'
3-d additional boundary conditions
e l ! = e�! = ~I�! = z O! = 0

 L! = 25o
z L! =15m

The cases analyzed are the following:
1. Two-dimensional excitation

Linear current velocity with V��!=1.03 m/s and V  h�!=1.5 m/s
Riser top dynamic excitation, excitation frequency = 0.6 rad/s Ixil = 3 m, ly>l = 3 m and zero phase
between these motions
No waves

2. Two-dimensional excitation

Current and top dynamic excitation are the same as above
Wave amplitude = 3 m with wave angle f/' and the same excitation frequency. The phase of the
dynamic motions of the riser is measured with respect to the wave elevation at xW and zW.

3. Three-dimensional excitation

'Ihe same current profile is used but is rotated by 22.5 degrees about the y-axis from the +x direction
to the +z direction,
V��! = 0.952 m/s, V �! = 0.394 m/s
V� h !=1,386m/s, V h ! =o. m/s
Top dynamic excitation was also rotated by 22.5
Ix tl = 2.77 m, ly i I = 3 m, Iz il = 1.15 m, with zero phase with respect to the wave elevation at xW, z=0
Wave amplitude = 3 rn, wave frequency = 0.6 rad/s and wave angle = 22,5 with respect to Ihe positive
x direction.

Figure 5.3 adapted l'rom [5], presents the static configuration, static effective tension and curvature for static cases

I and ll  no account for wave and dynam ic motion static effects!, The maxim um static effective tension is estimated

to be 45,16 kN with location close to the upper end of the riser. The presence of the boundary layer can be seen in

these figures. 1he minimum static bending radius is 3.34 m and occurs at the lower end of the riser.

Figures 5.4, 5.5 and 5,6 present the dynamic results for case 1, while Figures 5.7, 5,8 and 5.9 present the dynamic

results for case 2 using an initial static configuration which does not account for static effects of wave and riser

dynamic motions. Figures 5.10, 5.11 and 5.12 present the dynamic results for case 2 again using the corrected static

configuration accounting for static effects of wave and riser dynamic motions. Figures 5.4, 5.7 and 5,10 present the
non-dimensional dynamic effective tension and dynamic shear in the   direction as a function of the non-

dimensional arc length, while Figures 5.5, 5.8 and 5.11 present the non-dimensional curvature in the rl direction as a

function of the non.dimensional iuc length and Figures 5.6, 5.9 and 5.12 present the dimensional p and q motions of

the riser as a function of the non-dimensional ate length.

Comparing Figures 5.4, 5.5 and 5.6 with Figutes 5.7, 5.8 and 5.9, the effect of the wave on the dynamic response

of the riser can be measured, This effect is important only in the upper part of the riser where direct wave effects are
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more significant The, maximum dynamic tension, the maximum dynamic shear and the maximum dynamic

curvature at thc top of the riser increase under the presence of the wave; thc maximum dynamic tension from 14.4

kN to 15.3 kN. the maximum dynamic shear from 13.1 kN to 23.1 kN and the maximum dynamic curvature from

0,21 m' to 0.36 m'. The dynamic motions near the top of the riser increase also in the presence of waves,
particularly the q motions.

Comparing Figures 5,7, 5.S and 5.9 with Figures 5.10, 5,11 and 5.12 the effect of the improvement of the static

solution accounting for waves and riser dynamic motions can be seen on thc predicted dynamic response of the riser.
This effect is only minor, The maximum dynamic tension at the top decreases from 15.3 kN to 14.2 kN, the

maximum dynamic shear at the top increases from 23.1 kN to 24.0 kN and the maximum dynamic curvature in the q

direction increases from 0.36 m ' to 0.38 m '. The dynamic motions at the top of the riser increase also in the
corrected dynamic solution.

Figures 5,13 and 5,14, adapted from [5], present some of the static rcsulLs for the three-dimensional riser

configuration in case ill. The static configuration, the static effective tension, static shear in the g and q directions

and the static curvatures in the g and q directions are shown as a function of the arc length. The maximum static

effective tension is 45 kN, while the maximum static shear in the   direction is 11.54 kN. Figures 5.15  dynamic

forces!, 5.16  dynamic curvatures! and 5,17  dynamic motions! summarize our dynamic results for this static

configuration. For thc excitation conditions which are the conditions of case 2 rotated by 22,5 degrees the following

maximum dynamic quantities at the top of the riser are obtained; Maximum dynamic effective tension of 15.63 kN,

maximum dynamic shear in the   direction of 15.29 kN, maximum shear in the q direction of 17.03 kN, maximum

dynamic curvature in the q direction of 0.257 m ', maximum dynamic curvature in the   direction of 0.247 m

while the dynamic torsion in the g direction is negligible.

5.3 DEEP WATER CATENARY RISER WITH BOTTOM INTERACTION

The catenary riser with bottom intenction analyzed in this section consists of the same uniform ficxiblc pipe used

in the previous section except for the total length and the strain relief units at Ihe riser ends. The total length of the

riser is L=1000 m and the length of the strain relief units near the ends is 20 m from s=0 and s=L. The water depth

is 300 rn. The spring and damping bottom interaction coefficients are taken equal to K > = 5000 Pa and V' = 5000

Kg/ms respectively. The static boundary conditions For this configuration are:
�! = y�! = 0

x L! = g00m
y L! = 300 tn
4�! =0'
ttt L! ~ 90'
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L p,
p0
p~
P QgC
Ao
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mp
m<
m,<
m,~

W EA
EPa

GF

P

c CD
Cr
Cr<

Table S-2: Characteristics of Shallow Water Catenary Riser from [5]
= 140m
= 0.269 m

= 0.3048 m
= 0.3048 m
= 0.9576 Al

= 729.7 cm2
= 506,7 cm
= 1 l9,6 kg/m
= 78.05 kg/m
= 74,79 kg/m
= 74.79 kg/m
= 439.35 N/m
= 4.88x IOs N
= 3.6xlO Nm~
= 3.6xlOr Nm~
= 1.164x10 Nm~
= 820 kg/m3
= 3.45 MPa
=0m/s
= 1.0

= 0.05

= 0.05
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Figure 5-3: Static Results for a 2-D Catenary Rr'ser, adapted from [5]
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Figure 5-4: Dynamic Forces for 2-D Catenary Riser, Case 1

SHALLOW CATENARY RtSER - NO WAVE
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Tive excitation characteristics used in this case include a linear current profile with riser bouom velocity of 1.03
m/s and riser iop velocity of 1.5 m/s. The dynamic excitation frequency is 0.6 rad/s and the riser is excited by top
motion in the heave direction  y i! with amplitude 3 m and in the surge direction  xt! with amplitude 3 m and zero
phase between the motions.

Figures 5.18, 5.19 and 5.20 present the static configuration, the static effective tension and the static curvature in
the ri direction respectively for this riser configuration as a function of the non-dimensional arc length.
Approximately 60% percent of the length of this riser lies on the ocean bottom. The stadc effective tension is
constant for the riser part lying on the bottotn and increases linearly for the upper part of the riser. The maximum
effective tension is of the order of 192 kN mosdy attributed to the weight of the catenary riser. The static shear
force is very small  about 1.5 kN! and cannot be seen in Figure 5.19. From Figure 5.20 it can be seen that there is an

internal layer in the boundary between the riser part lying on the bottom and the rest of the riser where curvature

changes rapidly. Overall the maximum static curvature is very small and of the order of 0.015 m '.

Figures 5.21, 5.22 and 5.23 present the dynamic forces, the dynamic curvature and the dynamic motions
respectively as a function of the arc length for this riser configuration, The maximum dynamic effective tension is
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Figure 5-5: Dynamic Curvatures for 2-D Catenary Riser, Case l
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114 kN �9% of the top static effective tension! and the maximum dynamic shear force is 27 kN at the top of the

riser. The maximum dynamic curvature is of the order of 0.225 m ' which is comparable to the curvatures for the

shallow water catenary riser  previous example!. For the deep water catenary riser the total effective tension is very

large. The riser weight is the most significant contributing factor increasing the magnitude of the static effective

tension. The large dynamic tension is primarily due to the large heave acceleration imposed at the top end. This

was verified by artificially reducing the heave amplitude to zero. In this case the dynamic tension reduced to 3.9 kN

 only 2% of the top static effective tension!, while the dynamic shear reduced to 22,6 kN.



Figure 5-6: Dynamic Motions for 2-D Catenary Riser, Case i
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Figure 5-7: Dynamic Forces for 2-D Catenary Riser, Case 2
Initial Static Configuration
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Figure 5-8: Dynamic Curvatures for 2-D Catenary Riser, Case 2
Initial Static Configuration
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SHALLOW CATENARY RISER - WAVE AMPLITUDE = 3 rn
1
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Figure 5-9: Dynamic Motions for 2-D Catenary Riser, Case 2
Initial Static Configuration
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Figure 5.10: Dynamic Forces for 2-D Catenary Riser, Case 2
Corrected Static Configuration
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} igure 5-}}. Dynamic Curvatures for2-D Catenary Riser, Case 2
Corrected Static Configuration
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Figure 5-12: Dynamic Motions for 2-D Catenary Riser, Case 2
Corrected Static Configuration
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Figure 5-I3: Static Results for 3-D Catenary Riser, from [5]
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Figure 5-14: S atic Results for 3-D Catenary Riser, from �] continued
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Figure 5-lS: Dynamic Forces for 3-D Catenary Riser, Case 3
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Figure S-I6: Dynamic Curvatures for 3-D Catenary Riser, Case 3
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Figure S-I7: Dynamic Motions for 3-D Catenary Riser, Case 3
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Figure 5-22: Dynamic Curvature for Catenary Riser Experiencing
Bottom interaction - Excitation Frequency = 0.6 rad/s
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Figure 5-23: Dynamic Motiotts for Catenary Riser Experiencing
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6. CONCLUSIONS AND RECOMMENDATIONS

The research described in this report allows us to analyze global non-linear three-dimensional statics and

dynamics of single leg multitube compliant risers in the presence of cuirents and monochromatic waves and motions

and rotations applied at both ends.

The dynamic solutions are based on linearization of the structural part of the equations of motion around a

non-linear static configuration and equivalent linearization of non-linear drag and ocean riser bouorn interaction

forces.

The results of our method have been compared with other idealizations, such as the cable idealization, and other

solution techniques such as non-linear time domain methods addressing the full beam problem. Comparisons with

appropriate cable idealIzations, revealed that, as long as the dynamic tension is small compared to the static tension,

ihe maximum dynamic tension based on a cable idealization is close to the tension predicted by the Euler beam

equations. The comparisons with time domain independent non-linear codes for flexible risers using finite element

methods confirmed the usefulness of the frequency domain method developed allowing rapid and reliable

coinputations of the response even under extreme excitation. The comparisons were good for the cases studied but

are expected to deteriorate when the dynamic tension exceeds the static tension. In such cases the structural

linearization ceases lo be valid and a non-linear time doinain solution is needed.

In the sequel some of the more important observations from our research are summarized.

The results of this work indicate that the effects of dynamic motion on the static forces and solution are relatively

small and therefore may be neglected to a first approxiination.

Ha solution method developed based on an adaptive non-uniform grid finite difference technique is successful in

efficiently resolving sharp gradients of the solution present either near the supports or at the ends of large bucvymcy

modules.

Dynamic curvature and tension may be significant in comparison to the static quantities and, therefore, dynamic

effects should be considered in prehminary design of compliant risers.

Based on the present research the following recommendatmns for further work may be made
1. Develop a frequency domain fatigue program for compliant risers in the presence of direct wave and

platforin inotion excitation. The effect of vortex induced oscillations should also be investigated.
Such a capability is necessary because of the smaH oscillatory bending radii and large dynamic
tensions possible in compliant risers, especiany for deeper waters. Reliable laboratory experiinents to
determine the fatigue characteristics of flexible riser constructions are needed to make the results of
fatigue programs useful to the practicing designer.
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2. Extend the present methodology for statics and dynamics to multileg configurations. This can be
accomplished efficiently because the present method avows incorporation of the effects of compliance
at the ends of a single leg system.

3. Investigate the effects of dynamic tension exceeding the static tension and bottom interaction effects
 parucularly when impact is possible! using a non-linear time domain solution technique.

4. Compare the results of theoretical analysis with measured data.
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I. Approximate Analytical Static Solution For Catenary Risers With Ocean Bottom
Interaction

In this section, an approximate analytical solution of the two&mensional static problem corresponding to a
catenary riser in calm water, experiencing riser-ocean bottom interaction is presented, This analytical solution is
similar to the catenary riser approximate solution presented in reference [5].

For simplicity we use the mean effective weight and assume that ~0 in the static equations, because the

extensional rigidity of the riser is very large. With these assumptions the resulting governing static non-dimensional
equauons without bottom interaction are:

T = sing + Q ~l
OS 000

Q = cos4 � T S2
Qs 0 0 0

�= -8 LQ, ~   � } fl"g
8

'OS = "0

X = COSA
Os

y = sing

A uniform leading order approximation for 2[!  s! can be found by simple boundary layer theory [5]

where 4~ s! denotes the cable solution and 2[!,t s! and 1[!~ s! are the boundary layer terms possibly important at the
lower and upper end of the riser, respectively. Using the catenary cable solution the following non4imensional
results are obtained.

Tgs! =  H +[V-�-s!] !
-1 < V- 1-s

tH + V �

xmas! = Hisinh [ ! - sinh [ 1!v- 1-s . -1  v-1

yes! = H<�+[ V-L!-s~
	/2  ls jV-1$
	/2!
M M

where V and H are the non4imensional top end reaction forces in vertical and horizontal directions respectively.
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imposing the boundary conditions on the top motions of the riser we obtain:

x = H sinh   � ! - s1nh t !l
-1 V . -1 V-1

T H H

H [1  V 2	/2 �+  V-l!
!l/2!"T= H H

Figure I-I: Catenary riser with bottom interaction configuration

xT

Up to this point thc approximate solution is identical to the simple catenary riser case as was also presented in [5J.

The above two equations can be solved to determine V and H. Now, if yW corresponds to the ocean bottom which

is the usual case for catenary, lazy wave and lazy S configurations and if V < I from the catenary cable solution we
have

V-1

!, v- 

N

Thus in this case y,�!<0 and there is riser-ocean bottom interaction and the above cable solution needs to be

modified. Figurc I.l presents a two-dimensional riser configuration with bottom interac0on where the important

parameters arc identified. In this case from the vertical fotce equilibrium,
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where 1> corresponds to the non-dimensional length of the static bottom imeractian region. For the catenary cable
solution in this case we need to distinguish two regions:

Region A

~�  ! = -, �- s. .,!j

T  s! = jH[

x  s! = sgr! xT! s

For 0 < s   Kb - ]

~  != -KKK-

Region B For k> < s < 1
+ � I'1-sgn x !!

s+V-1

00 H 2 T

T  s! =

x  s! = sgn xT!  1-V! + j H  sinh   H !

I  s!

where K� is the bottom interaction spring coefficient and w is the riser effective ~eight per unit length. Applying
the boundary conditions at the top of the riser we obtain the following equations to solve for V and H.

xT = sgn xz! !-v! + IHI !n  >" + 8] +  <! !

These equations are solved by Poweil's hybrid method �2], [27j. Once V and H are determined the cable solution

can be determined. Then the leading order aproximations for T  s!, Qgs!, Q '! s!. x, s! and y, s! can be also
determined by taking account of the boundary layer at the top of the riser. There is no significant boundary layer in
the lower end of the riser, but there may be an internal layer in the interface between the bottom interacdon and no

bottom interaction region which is neglected in this initial approximation. The boundary layer correction for f, s! at
the top of the riser is
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e > s! = �T - ~ �!] exp[-�-s!J 8" �! T �!]

l?, s! is calculated from Q, = 0 and Q < is calculated from Q < = -�/P!Q»".






